The Hermitian ovoids of Cossidente , Ebert , Marino , Siciliano

نویسندگان

  • Marino
  • Siciliano
  • Norman L. Johnson
  • N. L. Johnson
چکیده

The two classes of semifield spreads of Cossidente et al. arising from their Hermitian ovoids are completely determined as a set of Kantor-Knuth flock semifield spreads and a set of Hughes-Kleinfeld semifield spreads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shult Sets and Translation Ovoids of the Hermitian Surface

Starting with carefully chosen sets of points in the Desarguesian affine plane AG(2, q2) and using an idea first formulated by E. Shult, several infinite families of translation ovoids of the Hermitian surface are constructed. Various connections with locally Hermitian 1–spreads of Q−(5, q) and semifield spreads of PG(3, q) are also discussed. Finally, geometric characterization results are dev...

متن کامل

Permutable polarities and a class of ovoids of the Hermitian surface

Using some geometry of quadrics permutable with a Hermitian surface H(3, q2) of PG(3, q2), q odd, a class of ovoids of H(3, q2) admitting the group PGL(2, q) is constructed.

متن کامل

On m-ovoids of W3(q)

We show that the generalized quadrangle W3(q) for odd q has exponentially many 12(q+1)–ovoids, thus implying that the generalized quadrangle Q(4, q) has exponentially many hemisystems for odd q. For q even, we show that W3(q) has m–ovoids for all integers m, 1 ≤ m ≤ q. Stabilizers are determined, and some computer results are given.

متن کامل

Commuting Hermitian varieties and the flag geometry of PG(2, q)

A connection between commuting Hermitian varieties of PG(5, q2) and the flag geometry of PG(2, q2), q odd, is showed. In particular, we use this connection to provide a full embedding of this flag geometry in the Hermitian variety H(8, q2) of PG(8, q2). Mathematics Subject Classification (2002): 51E15, 05B25, 20G40.

متن کامل

On partial ovoids of Hermitian surfaces

Lower bounds for the size of a complete partial ovoid in a nondegenerate Hermitian surface are obtained. For even characteristic, a sharp bound is obtained and all examples of this size are described. Next, a general construction method for locally hermitian partial ovoids is explained, which leads to interesting small examples. Finally, a conjecture is given for the size of the largest complet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007